a) Publications Internationales (1 par ligne en donnant obligatoirement le lien vers la revue /’URL)


D. A. CHACHA, A. GHEZAL and A. BENSAYAH, “Existence Result for a Dynamical Equations of Generalized Marguerre-von Kármán Shallow Shells”, J Elast. DOI  10.1007/s10659-012-9402-5. (2012).



  1. A.     BENSAYAH, D.A. CHACHA et A. GHEZAL, “ Asymptotic modeling of a Signorini problem of generalized Marguerre-von Karman Shallow Shells”, Applicable Analysis Journal (2012).



D. A. CHACHA and M. MILOUDI, Asymptotic Analysis of Nonlinearly Elastic Shells

Mixed Approach", Asymptotic Analysis 80 (2012) 323–346. DOI 10.3233/ASY-2012-1119.

 IOS Press.



S. MERABET and E. SANCHEZ PALENCIA, “On sensitive elliptic singular perturbation problems and large oscillations.The case of shells with edges”, Mathematical methods in the applied sciences (2012).



S. MERABET, S. NICAISE and D. A. CHACHA, “On the asymptotic behavior of  transmission thin shell problems”, Volume 82, Number 1-2 / 2013 Asymptotic Analysis Journal. DOI10.3233/ASY-121144 .



H. BENNOUR and M.S. SAID, “ Numerical Solution of Poisson equation with Dirichlet Boundary Conditions”,  Int. J. Open Problems Compt. Math., Vol. 5, No. 4, pp. 171-195, December 2012 ISSN 1998-6262; Copyright c ICSRS Publication, (2012),



M. MEFLAH, “A Similar Nonlinear Telegraph Problem Governed by Lamé System”, International  Journal of Nonlinear  Sciences,     ISSN 2241-0503 (2012),



M. MEFLAH, “Periodic solution of a nonlinear problem by elliptic regularization techniques”, J. Math. Comput. Sci., ISSN: 1927-5307 (2012),



A. CHENIGUEL, “Numerical Simulation of Two-Dimensional Diffusion  Equation with Non Local Boundary Conditions”International Mathematical Forum, Vol. 7, (2012), no. 50, 2457-2463,



M. MEFLAH, “A Nonlinear Elasticity Problem by Elliptic Regularization Technics”, Int. J. Contemp. Math. Sciences, Vol.6, (2011), no. 25, 1221-1229,.


M. MEFLAH, “ STUDY OF NONLINEAR ELASTICITY PROBLEM BY ELLIPTIC REGULARITION WITH LAME SYSTEM”, Int. J. of. Mathematical Archive-2(5), May 2011, Page 693-697,   ISSN 2229-5046,


A. CHENIGUEL, “Numerical Method for Solving Wave Equation with Non Local Boundary Conditions”, Proceedings of the international MultiConference of Engineers and computer Scientists 2013 Vol II.